<u>МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ</u> "ТАИЦКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА"

Приложение к основной образовательной программе среднего общего образования утвержденной приказом № 138 от 30.08.2018г

Рабочая программа

По астрономии

для 10-11 классов, базовый уровень

(уровень: базовый, профильный)

1 год

(срок реализации)

Рабочая программа составлена на основе примерной программы по астрономии в соответствии с ФГОС, ООП СОО, авторской программы курса «Астрономия» 10-11 классы под редакцией Е.К. Страута

Разработчики программы:

Шимончук Е.А. учитель физики высшей квалификационной категории

«PACCMOTPEHA»:

на заседании Педагогического совета

Протокол №1 от «30» августа 2018г.

Рабочая программа составлена на основе учебной программы по астрономии для общеобразовательных учреждений «Астрономия 11 класс» (Е. К. Страут, 2010 г.).

В соответствии с учебным планом МБОУ «Таицкая СОШ» рабочая программа рассчитана на 35 часов по 1 учебному часу в неделю в 10 классе.

Предлагаемая рабочая программа реализуется в учебнике «Астрономия. 11 класс», Б. А. Воронцов-Вельяминов, Е. К.Страут, 2018г.

1. Планируемые результаты изучения учебного предмета.

Личностными результатами освоения курса астрономии в средней (полной) школе являются:

- формирование умения управлять своей познавательной деятельностью, ответственное отношение к учению, готовность и способность к саморазвитию и самообразованию, а также осознанному построению индивидуальной образовательной деятельности на основе устойчивых познавательных интересов;
- формирование познавательной и информационной культуры, в том числе навыков самостоятельной работы с книгами и техническими средствами информационных технологий;
- формирование убежденности в возможности познания законов природы и их использования на благо развития человеческой цивилизации;
- •формирование умения находить адекватные способы поведения, взаимодействия и сотрудничества в процессе учебной и внеучебной деятельности, проявлять уважительное отношение к мнению оппонента в ходе обсуждения спорных проблем науки.

Метапредметные результаты освоения программы предполагают:

- находить проблему исследования, ставить вопросы, выдвигать гипотезу, предлагать альтернативные способы решения проблемы и выбирать из них наиболее эффективный, классифицировать объекты исследования, структурировать изучаемый материал, аргументировать свою позицию, формулировать выводы и заключения;
 - анализировать наблюдаемые явления и объяснять причины их возникновения;
- на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, мысленного эксперимента, прогнозирования;
 - выполнять познавательные и практические задания, в том числе проектные;
- •извлекать информацию из различных источников (включая средства массовой информации и интернет-ресурсы) и критически ее оценивать;
- готовить сообщения и презентации с использованием материалов, полученных из Интернета и других источников.

Предметные результаты изучения астрономии в средней (полной) школе представлены в содержании курса по темам.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания

не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Одним из путей повышения мотивации и эффективности учебной деятельности в основной школе является включение учащихся в *учебно-исследовательскую и проектную деятельность*, которая имеет следующие особенности:

1) цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности подростков в предметной области

определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;

- 2) учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества вколлективе;
- 3) организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности. В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.

Требования к уровню подготовки выпускников

Выпускник на базовом уровне научится:

- использовать карту звездного неба для нахождения координат светила;
- выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования астрономических знаний о небесных телах и их системах;
- решать задачи на применение изученных астрономических законов;
- осуществлять самостоятельный поиск информации
- естественнонаучного содержания с использованием различных источников, ее обработку и представление в разных формах;
- владеть компетенциями: коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной, смылопоисковой, и профессионально-трудового выбора
- владеть смыслом понятий: активность, астероид, астрология, астрономия, астрофизика, атмосфера, болид, возмущения, восход светила, вращение небесных тел, Вселенная, вспышка, Галактика, горизонт, гранулы, затмение, виды звезд, зодиак, календарь, космогония, космология, космонавтика, космос, кольца планет, кометы, кратер, кульминация, основные точки, линии и плоскости небесной сферы, магнитная буря, Метагалактика, метеор, метеорит, метеорные тело, дождь, поток, Млечный Путь, моря и материки на Луне, небесная механика, видимоеи реальное движение небесных тел и их систем, обсерватория, орбита, планета, полярное сияние, протуберанец, скопление, созвездия и их классификация, солнечная корона, солнцестояние, состав Солнечной системы, телескоп, терминатор, туманность, фазы Луны, фотосферные факелы, хромосфера, черная дыра, эволюция, эклиптика, ядро;
- определять физические величины: астрономическая единица, афелий, блеск звезды, возраст небесного тела, параллакс, парсек, период, перигелий, физические характеристики планет и звезд, их химический состав, звездная величина, радиант, радиус светила, космические расстояния, светимость, световой год, сжатие планет, синодический и сидерический период, солнечная активность, солнечная постоянная, спектр светящихся тел Солнечной системы;

Получит возможность научиться

понимать смысл работ и формулировку законов:

Аристотеля, Птолемея, Галилея, Коперника, Бруно, Ломоносова, Гершеля, Браге, Кеплера, Ньютона, Леверье, Адамса, Галлея, Белопольского, Бредихина, Струве, Герцшпрунга-Рассела, , Хаббла, Доплера, Фридмана, Эйнштейна.

2. Содержание курса астрономии 10 класса (35 ч, 1 ч в неделю). <u>Что изучает астрономия. Наблюдения — основа астрономии</u> (2 ч)

Астрономия, ее связь с другими науками. Структура масштабы Вселенной. Особенности астрономических методов исследования. Телескопы и радиотелескопы. Всеволновая астрономия.

Демонстрации.

- 1. портреты выдающихся астрономов;
- 2. изображения объектов исследования в астрономии.

Предметные результаты освоения темы позволяют:

- воспроизводить сведения по истории развития астрономии, ее связях с физикой и математикой;
- использовать полученные ранее знания для объяснения устройства и принципа работы телескопа.

Практические основы астрономии (5 ч)

Звезды и созвездия. Звездные карты, глобусы и атласы. Видимое движение звезд на различных географических широтах. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Движение и фазы Луны. Затмения Солнца и Луны. Время и календарь.

Предметные результаты изучения данной темы позволяют:

- воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время);
- объяснять необходимость введения високосных лет и нового календарного стиля;
- объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца:
 - применять звездную карту для поиска на небе определенных созвездий и звезд. Демонстрации.
 - 1. географический глобус Земли;
 - 2. глобус звездного неба;
 - 3. звездные карты;
 - 4. звездные каталоги и карты;
 - 5. карта часовых поясов;
 - 6. модель небесной сферы;
 - 7. разные виды часов (их изображения);
 - 8. теллурий.

Строение Солнечной системы (7 ч)

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет. Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Предметные результаты освоения данной темы позволяют:

- воспроизводить исторические сведения о становлении развитии гелиоцентрической системы мира;
- воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);

- вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- объяснять причины возникновения приливов на Земле возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Демонстрации.

- 1. динамическая модель Солнечной системы;
- 2. изображения видимого движения планет, планетных конфигураций;
- 3. портреты Птолемея, Коперника, Кеплера, Ньютона;
- 4. схема Солнечной системы;
- 5. фотоизображения Солнца и Луны во время затмений.

Природа тел Солнечной системы (8 ч)

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Ис-следования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды. Метеоры, болиды и метеориты.

Предметные результаты изучение темы позволяют:

- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеороиды, метеоры, болиды, метеориты);
 - описывать природу Луны и объяснять причины ее отличия от Земли;
- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет;
- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
 - описывать последствия падения на Землю крупных метеоритов;
- объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения.

Демонстрации.

- 1. глобус Луны;
- 2. динамическая модель Солнечной системы;
- 3. изображения межпланетных космических аппаратов;
- 4. изображения объектов Солнечной системы;

- 5. космические снимки малих тел Солнечной системы;
- 6. космические снимки планет Солнечной системы;
- 7. таблицы физических и орбитальных характеристик планет Солнечной системы;
- 8. фотография поверхности Луны.

Солнце и звезды (7 ч)

Излучение и температура Солнца. Состав и строение Солнца. Источник его энергии. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Звезды — далекие солнца. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Диаграмма «спектр—светимость». Массы и размеры звезд. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы.

Предметные результаты освоения темы позволяют:

- определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;
- описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
 - объяснять механизм возникновения на Солнце грануляции и пятен;
- описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
 - вычислять расстояние до звезд по годичному параллаксу;
- называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр светимость»;
 - сравнивать модели различных типов звезд с моделью Солнца;
 - объяснять причины изменения светимости переменных звезд;
 - описывать механизм вспышек Новых и Сверхновых;
 - оценивать время существования звезд в зависимости от их массы;
 - описывать этапы формирования и эволюции звезды;
- характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Демонстрации.

- 1. диаграмма Герцшпрунга Рассела;
- 2. схема внутреннего строения звезд;
- 3. схема внутреннего строения Солнца;
- 4. схема эволюционных стадий развития звезд на диаграмме Герцшпрунга Рассела;
 - 5. фотографии активных образований на Солнце, атмосферы и короны Солнца;
 - 6. фотоизображения взрывов новых и сверхновых звезд;
 - 7. фотоизображения Солнца и известных звезд.

Строение и эволюция Вселенной (5 ч)

Наша Галактика. Ее размеры и структура. Два типа населения Галактики. Межзвездная среда: газ и пыль. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы. Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Нестационарная Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.

Предметные результаты изучения темы позволяют:

- объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период светимость»;
 - распознавать типы галактик (спиральные, эллиптические, неправильные);
- сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной;
- обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;
 - формулировать закон Хаббла;
- определять расстояние до галактик на основе закона Хаббла; по светимости Сверхновых;
 - оценивать возраст Вселенной на основе постоянной Хаббла;
- интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы Горячей Вселенной;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва;
- интерпретировать современные данные об ускорении расширения Вселенной как результата действия антитяготения «темной энергии» вида материи, природа которой еще неизвестна.

Демонстрации.

- 1. изображения радиотелескопов и космических аппаратов, использованных для поиска жизни во Вселенной;
 - 2. схема строения Галактики;
 - 3. схемы моделей Вселенной;
 - 4. таблица схема основных этапов развития Вселенной;
 - 5. фотографии звездных скоплений и туманностей;
 - 6. фотографии Млечного Пути;
 - 7. фотографии разных типов галактик.

Жизнь и разум во Вселенной (2 ч)

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

Предметные результаты позволяют:

• систематизировать знания о методах исследования и современном состоянии проблемы существования жизни во Вселенной.

Тематическое планирование.

№ п/п	Тема	Количес тво часов теории	Практи ческие работы	Контрол ьные работы	Основные виды учебной деятельности учащегося	
1	Что изучает астрономия. Наблюдения — основа астрономии	2	_	_	 Поиск примеров, подтверждающих практическую направленность астрономии. Применяет знания, полученные в курсе физики, для описания устройства телескопа. Характеризует преимущества наблюдений, проводимых из космоса. 	
2	Практические основы астрономии	3	2		 Подготовка презентации об истории названий созвездий и звезд. Применяет знания, полученные в курсе географии, о составлении карт в различных проекциях. Работает со звездной картой при организации и проведении наблюдений Характеризует отличительные особенности суточного движения звезд на полюсах, экваторе и в средних широтах Земли. Характеризует особенности суточного движения Солнца на полюсах, экваторе и в средних широтах Земли Изучает основные фазы Луны. Описывает порядок их смены. Анализирует причины, по которым Луна всегда обращена к Земле одной стороной. Описывает взаимное расположение Земли, Луны и Солнца в моменты затмений. Объясняет причины, по которым затмения Солнца и Луны не происходят каждый месяц Подготовка и презентация сообщения об истории календаря. Анализирует необходимость введения часовых поясов, високосных лет и нового календарного стиля. 	
3	Строение Солнечной системы	5	2		 Подготовка и презентация сообщения означении открытий Коперника и Галилея для формирования научной картины мира. Объясняет петлеобразное движение планет с использованием эпициклов и дифферентов. Описывает условия видимости планет, находящихся в различных конфигурациях. Решает задачи на вычисление звездных периодов обращения внутренних и внешних планет. Анализирует законы Кеплера, их значения для развития физики и астрономии. 	

				 Решает задачи на вычисление расстояний планет от Солнца на основе третьего закона Кеплера. Решает задачи на вычисление расстояний и размеров объектов. Построение плана Солнечной системы в принятом масштабе с указанием положения планет на орбитах. Определение возможности их наблюдения на заданную дату. Решает задачи на вычисление массы планет. Объясняет механизм возникновения возмущений и приливов. Подготовка и презентация сообщения о КА, исследующих природу тел Солнечной системы.
Природа тел Солнечной системы.	5	1	2	 На основе знаний физических законов объясняет явления и процессы, происходящие в атмосферах планет. Описывает и сравнивает природы планет земной группы. Объяснение причин существующих различий. Подготовка и презентация сообщения о результатах исследований планет земной группы. Подготовка и презентация сообщения по этой проблеме. Участие в дискуссии. На основе знаний законов физики описание природы планет-гигантов. Подготовка и презентация сообщения о новых результатах исследований планет гигантов, их спутников и колец. Анализирует определение понятия «планета». Описывает внешний вид астероидов и комет. Объясняет процессы, происходящие в комете, при изменении ее расстояния от Солнца. Подготовка и презентация сообщения о способах обнаружения опасных космических объектов и предотвращения их столкновения с Землей. На основе знания законов физики описывает и объясняет явления метеора и болида. Подготовка сообщения о падении наиболее известных метеоритов.

5	Солнце и звезды	4	1	1	 На основе знаний физических законов описывает и объясняет явления и процессы, наблюдаемые на Солнце. Описывает процессы, происходящие при термоядерных реакциях протон-протонного цикла. На основе знаний о плазме, полученных в курсе физики, описывает образование пятен, протуберанцев и других проявлений солнечной активности. Характеризует процессы солнечной активности и механизма их влияния на Землю. Определяет понятие «звезда». Указывает положение звезд на диаграмме «спектр — светимость» согласно их характеристикам. Анализирует основные группы диаграммы. На основе знаний по физике описывает пульсацию цефеид как автоколебательного процесса. Подготовка сообщения о способах обнаружения «экзопланет» и полученных результатах. На основе знаний по физике оценивает время свечения звезды по известной массе запасов водорода; для описания природы объектов на конечной стадии эволюции звезд.
6	Строение и эволюция Вселенной.	5			 Описывает строение и структуру Галактики. Изучает объекты плоской и сферической подсистем. Подготовка сообщения о развитии исследований Галактики. На основе знаний по физике объясняет различные механизмы радиоизлучения. Описывает процесс формирования звезд из холодных газопылевых облаков. Определяет типы галактик. Подготовка сообщения о наиболее интересных исследованиях галактик, квазаров и других далеких объектов. Применяет принцип Доплера для объяснения «красного смещения». Подготовка сообщения о деятельности Хаббла и Фридмана. Доказывает справедливость закона Хаббла для наблюдателя, расположенного в любой галактике. Подготовка и презентация сообщения о деятельности Гамова и лауреатов Нобелевской премии по физике за работы по космологии.
7	Жизнь и разум во Вселенной.	1	_	1	 Подготовка и презентация сообщения о современном состоянии научных исследований по проблеме существования внеземной жизни во Вселенной. Участвует в дискуссии по этой проблеме.
		24	6	4	

Календарно-тематическое планирование 11 класс (1 час в неделю, всего — 35 часов).

№ и тема урока	Содержание урока	Формы и методы контроля	Домашнее задание	Дата (по плану/по факту)
	АСТРОНОМИЯ, ЕЕ ЗНАЧЕНИЕ И СВЯЗЬ С ДРУГИМИ	НАУКАМИ (2 ч	ч)	
1. Что изучает астрономия.	Астрономия, со связь с другими науками. Развитие астрономии было вызвано практическими потребностями человека, начиная с глубокой древности. Астрономия.математика и физика развивались в тесной связи друг с другом. Структура и масштабы Вселенной.	учебника и	§ 1	
2 Наблюдения — основа астрономии.	Наземные и космические приборы и методы исследования астрономических объектов. Телескопы и радиотелескопы. Всеволновая астрономия.	Устный опрос. Беседа.	§ 2	
	ПРАКТИЧЕСКИЕ ОСНОВЫ АСТРОНОМИИ	[(5 ч)		
Небесные координаты. Звездные карты.Практическая работа	Звездная величина как характеристика освещенности, создаваемой звездой. Согласно шкале звездных величин разность на 5 величин, различие в потоках света в 100 раз. Экваториальная система координат: прямое восхождение и склонение. Использование звездной карты для определения объектов, которые можно наблюдать в заданный момент времени.	Фронтальный опрос.	§ 3, 4	

	Высота полюса мира над горизонтом и ее зависимость от географической широты места наблюдения. Небесный меридиан. Кульминация светил. Определение географической широты по измерению высоты звезд в момент их кульминации.	опрос. Беседа.	§ 5	
Солнца. Эклиптика.	Эклиптика и зодиакальные созвездия. Наклон эклиптики к небесному экватору. Положение Солнца на эклиптике в дни равноденствий и солнцестояний. Изменение в течение года продолжительности дня и ночи на различных географических широтах.	ыи опрос. Бесела	§ 6	
6. Движение и фазы Луны. Затмения Солнца и Луны.	Луна — ближайшее к Земле небесное тело.ее единственный естественный спутник. Период обращения Луны вокруг Земли и вокруг своей оси — сидерический (звездный) месяц. Синодический месяц — период полной смены фаз Луны. Условия наступления солнечных и лунных затмений. Их периодичность. Полные, частные и кольцеобразные затмения Солнца. Полные и частные затмения Луны. Предвычисление будущих затмений.	Фронтальный опрос.	§ 7, 8	
7. Время и календарь.	Точное время и определение географической долготы. Часовые пояса. Местное и поясное, летнее и зимнее время. Календарь — система счета длительных промежутков времени. История календаря. Високосные годы. Старый и новый стиль.	Тестирование. Беседа.	§ 9	
	СТРОЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ (7	ч)		

8. Развитие представлений о строении мира.	Геоцентрическая система мира Аристотеля-Птолемея. Система эпициклов и дифферентов для объяснения петлеобразного движения планет. Создание Коперником гелиоцентрической системы мира. Роль Галилея в становлении новой системы мира.	Индивидуальн ый опрос. Беседа.	§ 10	
9. Конфигурации планет. Синодический период.	Внутренние и внешние планеты. Конфигурации планет: противостояние и соединение. Периодическое изменение условий видимости внутренних и внешних планет. Связь синодического и сидерического (звездного) периодов обращения планет.	Тестирование. Беседа.	§ 11	
Солнечной системы. Практическая работа № 3	Три закона Кеплера. Эллипс. Изменение скорости движения планет по эллиптическим орбитам. Открытие Кеплером законов движения планет — важный шаг на пути становления механики. Третий закон — основа для вычисления относительных расстояний планет от Солнца.	Фронтальный опрос. Практическая работа.	§ 12	
	Размеры и форма Земли. Триангуляция. Горизонтальный параллакс. Угловые и линейные размеры тел Солнечной системы.	Индивидуальн ый опрос. Беседа.	§ 13	
1 1	План Солнечной системы в масштабе 1 см к 30 млн км с указанием положения планет на орбитах согласно данным «Школьного астрономического календаря» на текущий учебный год.	Практическая работа.	_	
	Подтверждение справедливости закона тяготения для Луны и планет. Возмущения в движении тел Солнечной системы. Открытие планеты Нептун. Определение массы небесных тел. Масса и плотность Земли. Приливы и отливы	Фронтальный опрос. Беседа.	§ 14 (1-5)	
спутников, космических ап-	Время старта КА и траектории полета к пллнетам и другим телам Солнечной системы. Выполнение маневров, необходимых для посадки на поверхность планеты или выход на орбиту вокруг нее.	Индивидуальн ый опрос. Беседа.	§ 14 (6)	

	ПРИРОДА ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ (8 ч)						
Солнечная система как	Контрольная работа по итогам 1 полугодия (15 мин.). Гипотеза о формировании всех тел Солнечной системы в процессе длительной эволюции холодного газопылевого облака. Объяснение их природы на основе этой гипотезы.	Контрольная работа. Беседа.	§ 15, 16				
контрольной работы №	Краткие сведения о природе Земли. Условия на поверхности Луны. Два типа лунной поверхности — моря и материки. Горы, кратеры и другие формы рельефа. Процессы формирования поверхности Луны и ее рельефа. Результаты исследований, проведенных автоматическими аппаратами и астронавтами. Внутреннее строение Луны. Химический состав лунных пород. Обнаружение воды на Луне. Перспективы освоения Луны.	Фронтальный опрос. Беседа.	§ 17				
17. Природа планет земной группы. Практическая работа № 5 «Составление сравнительных характеристик планет земной группы».	Сходство внутреннего строения и химического состава планет земной группы. Рельеф поверхности. Вулканизм и тектоника. Метеоритные кратеры. Особенности температурных условий на Меркурии, Венере и Марсе. Отличия состава атмосферы Земли от атмосфер Марса и Венеры. Сезонные изменения в атмосфере и на поверхности Марса. Состояние воды на Марсе в прошлом и в настоящее время. Эволюция природы планет. Поиски жизни на Марсе.	Беседа. Практическая работа.	§ 18				
18. Урок-дискуссия «Парниковый эффект — польза или вред?».	Обсуждение различных аспектов проблем, связанных с существованием парникового эффекта и его роли в формировании и сохранении уникальной природы Земли.	Индивидуальн ый опрос. Беседа.	_				
19. Планеты-гиганты, их спутники и кольца.	Химический состав и внутреннее строение планет-гигантов. Источники энергии в недрах планет. Облачный покров и атмосферная циркуляция. Разнообразие природы спутников. Сходство при роды спутников с планетами земной группы и Луной. Наличие атмосфер у крупнейших спутников. Строение и состав колец.	Фронтальный опрос. Беседа.	§ 19				

системы (астероиды,	Астероиды главного пояса. Их размеры и численность. Малые тела пояса Койпера. Плутон и другие карликовые планеты. Кометы. Их строение и состав. Орбиты комет. Общая численность комет. Кометное облако Оорта. Астероидно-кометная опасность. Возможности и способы ее предотвращения.	Тестирование. Беседа.	§ 20 (1-3)				
метеориты. Контрольная	Одиночные метеоры. Скорости встречи с Землей. Небольшие тела (метеороиды). Метеорные потоки, их связь с кометами. Крупные тела. Явление болида, падение метеорита. Классификация метеоритов: железные, каменные, железокаменные. Контрольная работа № 2 по теме «Природа тел Солнечной системы» (20 мин.).	Беседа. Контрольная работа.	§ 20 (4)				
	СОЛНЦЕ И ЗВЕЗДЫ (6 ч)						
22. Анализ выполнения контрольной работы № 2.Солнце, состав и внутреннее строение.	Источник энергии Солнца и звезд — термоядерные реакции. Перенос энергии внутри Солнца. Строение его атмосферы. Грануляция. Солнечная корона. Обнаружение потока солнечных нейтрино. Значение этого открытия для физики и астрофизики.	Беседа	§ 21 (1-3)				
23. Солнечная активность и ее влияние на Землю.	Проявления солнечной активности: солнечные пятна, протуберанцы, вспышки, корональные выбросы массы. Потоки солнечной плазмы. Их влияние на состояние магнитосферы Земли. Магнитные бури, полярные сияния и другие геофизические явления, влияющие на радиосвязь, сбои в линиях электропередачи. Период изменения солнечной активности.	Фронтальный опрос. Беседа	§ 21 (4)				
24. Физическая природа звезд.	Звезда — природный термоядерный реактор. Светимостьзвезды. Многообразие мира звезд. Их спектральная классификация. Звезды-гиганты и звездыкарлики. Диаграмма «спектр — светимость».	Тестирование. Беседа	§ 22				

25. Массы и размеры звезд.	Двойные и кратные звезды. Звездные скопления. Их масса, плотность, состав и возраст. Модели звезд.	Индивидуальн ый опрос. Беседа.	§ 23	
нестационарные звезды.	Цефеиды — природные автоколебательные системы. Зависимость «период — светимость». Затменно-двойные звезды. Вспышки Новых —явление в тесных системах двойных звезд. Открытие «экзопланет» — планет и планетных систем вокруг других звезд. Контрольная работа № 3 по теме «Солнце и звезды» (15 мин.).	Беседа. Контрольная работа.	§ 24	
контрольной работы № 3.Эволюция звезд.	Зависимостьскорости и продолжительности эволюции звезд от их массы. Вспышка Сверхновой — взрыв звезды в конце ее эволюции. Конечные стадии жизни звезд: белые карлики.нейтронные звезды (пульсары), черные дыры.	Беседа. Практическая работа.		
28. Проверочная работа.	Проверочная работа по темам: «Строение Солнечной системы», «Природа тел Солнечной системы», «Солнце и звезды».	Проверочная работа.	_	
	СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ (5 ч)		
29. Наша Галактика.	Размеры и строение Галактики. Расположение и движение Солнца. Плоская и сферическая подсистемы Галактики. Ядро и спиральные рукава Галактики. Вращение Галактики и проблема «скрытой массы».	Беседа.	§ 25 (1, 2)	
30. Наша Галактика.	Радиоизлучение межзвездного вещества. Его состав. Области звездообразования. Обнаружение сложных органических молекул. Взаимосвязь звезд и межзвездной среды. Планетарные туманности — остатки вспышек Сверхновых звезд.	Тестирование. Беседа.	§ 25 (3, 4)	

31. Другие звездные системы — галактики.	Спиральные, эллиптические и неправильные галактики. Их отличительные особенности, размеры, масса, количество звезд. Сверхмассивные черные дыры в ядрах галактик. Квазары и радиогалактики. Взаимодействующие галактики. Скопления и сверхскопления галактик.		§ 26	
32. Космология начала XX в. Основы современной космологии.	Общая теория относительности. Стационарная Вселенная А. Эйнштейна. Вывод Л. Л. Фридмана о нестационарности Вселенной. «Красное смешение» в спектрах галактик и закон Хаббла. Расширение Вселенной происходит однородно и изотропно. Гипотеза Г. А. Гамова о горячем начале Вселенной, ее обоснование и подтверждение. Реликтовое излучение. Теория Большого взрыва. Образование химических элементов. Формирование галактик и звезд. Ускорение рас ширения Вселенной. «Темная энергия» и антитя-готение.	Беседа.	§ 27	
	ЖИЗНЬ И РАЗУМ ВО ВСЕЛЕННОЙ (2 ч)	•		
	Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности радиоастрономии и космонавтики для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет освоем существовании.	Конференция.	§ 28	
34. Промежуточная аттестация.	Контрольная работа № 4 по итогам года (1 час).	Контрольная работа.	_	